364 research outputs found

    Spectrally approximating large graphs with smaller graphs

    Get PDF
    How does coarsening affect the spectrum of a general graph? We provide conditions such that the principal eigenvalues and eigenspaces of a coarsened and original graph Laplacian matrices are close. The achieved approximation is shown to depend on standard graph-theoretic properties, such as the degree and eigenvalue distributions, as well as on the ratio between the coarsened and actual graph sizes. Our results carry implications for learning methods that utilize coarsening. For the particular case of spectral clustering, they imply that coarse eigenvectors can be used to derive good quality assignments even without refinement---this phenomenon was previously observed, but lacked formal justification.Comment: 22 pages, 10 figure

    Classification via Incoherent Subspaces

    Full text link
    This article presents a new classification framework that can extract individual features per class. The scheme is based on a model of incoherent subspaces, each one associated to one class, and a model on how the elements in a class are represented in this subspace. After the theoretical analysis an alternate projection algorithm to find such a collection is developed. The classification performance and speed of the proposed method is tested on the AR and YaleB databases and compared to that of Fisher's LDA and a recent approach based on on ℓ1\ell_1 minimisation. Finally connections of the presented scheme to already existing work are discussed and possible ways of extensions are pointed out.Comment: 22 pages, 2 figures, 4 table

    Reverberant Audio Source Separation via Sparse and Low-Rank Modeling

    Get PDF
    The performance of audio source separation from underdetermined convolutive mixture assuming known mixing filters can be significantly improved by using an analysis sparse prior optimized by a reweighting l1 scheme and a wideband datafidelity term, as demonstrated by a recent article. In this letter, we show that the performance can be improved even more significantly by exploiting a low-rank prior on the source spectrograms.We present a new algorithm to estimate the sources based on i) an analysis sparse prior, ii) a reweighting scheme so as to increase the sparsity, iii) a wideband data-fidelity term in a constrained form, and iv) a low-rank constraint on the source spectrograms. Evaluation on reverberant music mixtures shows that the resulting algorithm improves state-of-the-art methods by more than 2 dB of signal-to-distortion ratio

    Compressive Embedding and Visualization using Graphs

    Get PDF
    Visualizing high-dimensional data has been a focus in data analysis communities for decades, which has led to the design of many algorithms, some of which are now considered references (such as t-SNE for example). In our era of overwhelming data volumes, the scalability of such methods have become more and more important. In this work, we present a method which allows to apply any visualization or embedding algorithm on very large datasets by considering only a fraction of the data as input and then extending the information to all data points using a graph encoding its global similarity. We show that in most cases, using only O(log⁥(N))\mathcal{O}(\log(N)) samples is sufficient to diffuse the information to all NN data points. In addition, we propose quantitative methods to measure the quality of embeddings and demonstrate the validity of our technique on both synthetic and real-world datasets

    Principal Patterns on Graphs: Discovering Coherent Structures in Datasets

    Get PDF
    Graphs are now ubiquitous in almost every field of research. Recently, new research areas devoted to the analysis of graphs and data associated to their vertices have emerged. Focusing on dynamical processes, we propose a fast, robust and scalable framework for retrieving and analyzing recurring patterns of activity on graphs. Our method relies on a novel type of multilayer graph that encodes the spreading or propagation of events between successive time steps. We demonstrate the versatility of our method by applying it on three different real-world examples. Firstly, we study how rumor spreads on a social network. Secondly, we reveal congestion patterns of pedestrians in a train station. Finally, we show how patterns of audio playlists can be used in a recommender system. In each example, relevant information previously hidden in the data is extracted in a very efficient manner, emphasizing the scalability of our method. With a parallel implementation scaling linearly with the size of the dataset, our framework easily handles millions of nodes on a single commodity server

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    Fast Approximate Spectral Clustering for Dynamic Networks

    Get PDF
    Spectral clustering is a widely studied problem, yet its complexity is prohibitive for dynamic graphs of even modest size. We claim that it is possible to reuse information of past cluster assignments to expedite computation. Our approach builds on a recent idea of sidestepping the main bottleneck of spectral clustering, i.e., computing the graph eigenvectors, by using fast Chebyshev graph filtering of random signals. We show that the proposed algorithm achieves clustering assignments with quality approximating that of spectral clustering and that it can yield significant complexity benefits when the graph dynamics are appropriately bounded

    Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Get PDF
    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.Comment: 32 page
    • 

    corecore